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EVENT TIMELINE

Turner Auditorium

8:50 AM-9:00 AM
9:00 AM-9:50 AM

9:50 AM- 10:30 AM
10:30 AM- 10:50 AM
10:50 AM-11:30 AM
11:30 AM-12:10 PM
12:10 PM-1:30 PM
1:40 PM- 2:30 PM
2:30 PM-3:10 PM
3:10 PM-3:20 PM
3:30 PM

Welcome & Overview

Keynote: Tackling the Challenges of Big Data
Multimodal Large Language Models

Session: Al, Data Quality & Representativenes
Coffee Break

[ SG4Qa ¢Ff1Y 5FaF t 2N
Session: Healthcare Systems & Al

Lunch & Poster Session with Author Standby

[ SGQa ¢l f1Y DSYSNI (A
Interactive Session: Al to Advance Clinical Tria
Closing Remarks

Happy Hour



Join the conversation virtually
via Slack.

https://bit.ly/JHInHealth
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SPEAKER: Srinivasan Yegnasubramanian , MD, PhD,
Johns Hopkins School of Medicine
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JOHNS HOPKINS inHealth Precision Medicine

MEDICIMNE

Alignment with JHM Strategic Priorities

Strategic initiative to createtelligent, .
Innovative Health SystemqinHealth

o
Enable opportunities to:

A Harness revolutions in measurement, ‘

data, and analytics to drive innovation

A Deliver clinical, reputational and @

financial successes

A Create value for patients, physicians, @

payers and the health system

A Enable simpler governance structures,
timelier decisioamaking and clearer, more
transparent communication

A Embrace Al, data science and digital
transformation



iINnHealthPhase |: Groundbreaking Foundations

Clinical
Practice
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Evidence/ ' == %/ Data and
Health System Knowledge Analytics

Data curation/
Analytics
through inHealth
Precision
Medicine Analytics
Platform (PMAP)

intelligent,
innovative Health

inHealth

>27 Precision Medicine
Centers of Excellence
(PMCOEs)

Major Impact Across

Medicine  Neurology COVID-19
Surgery Rheumatology Critical Care
Pediatrics Cardiology Ambulatory Care
Oncology Nephrology  Telemedicine

Psychiatry Obstetrics Ophthalmology

Patient safety and quality




InHealth Phase Il: transforming health care delivery at scale through
precision innovation

Cutting edge Al analytics
and data science

Implementation and

Achieving Scale Value Creation:

A Big Data A Patients
A Centralized data curation A Providers
for Systemwide A Payers
application A Health System
A Regional, National, A Clinical, reputational,

Global impacts financial successes
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Health System

Data curation/
Analytics

inHealth Precision Medicine
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intelligent,
innovative Health

INnHealth

Strategic partnerships
and collaborations
with outside
Institutions and
industry

Potential for Local,
Regional, National, Global
impact



Cancer Al Alllance

Dana-Farber v ‘2 Fred Hutch

Cancer Institute /4 . Cancer Center -
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Deloitte. ) amazon

>$60M in funding & JOHNS HOPKINS Memorial Sloan Kettering

commitments to date to MEDICIMNE Cancer Center

develop national scale N
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& Microsoft
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Integrating across mulmodal data streams

Precision Medicine Analytics Platform (PMAP)
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N - = Financial,
EMR Clinical Data S = Operational
A Structured Genomics and Data
A Open notes Molecular Data
Radiology and . &
Pathology Timeseries,
Imaging Data Monitoring,

Wearables Data
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of Big Data - Multimodal Large Language Models

SPEAKER: Faisal Mahmood , PhD, Brlgham and
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#eC1. Mahmood Lab
@:Z) Al for Pathology u @AI4Patho|ogy

Multimodal, Generative, and Agentic Al fo
Pathology

Faisal Mahmood, Ph.D.

Associate Professor, Harvard Medical School
Department of Pathology, BWH and MGH
Cancer Data Science Program, Dana Farber Cancer Center
Broad Institute of Harvard and MIT

faisalmahmood@bwh.harvard.edu
www.mahmoodlab.org

11‘ 2 HARVARD BRIGHAM AND ’ A Dana-Farber % BROAD

MEDICAL SCHOOL WOMEN'S HOSPITAL '@ Cancer Institute INSTITUTE



http://www.mahmoodlab.org/

Disclosures

AScientific Advisor, EquityModella Al , Tremont Al
AScientific Advisor,Danaher



6"{201 Mahmood Lab
WIE7Y Al for Pathology

Outline

A Weakly Supervised Models for Pathology

- CLAM (Nature BME, 2021)
- Cancers of Unknown Primary (Nature, 2021)
- Cardiac Allograft Rejection (Nature Medicine, 2022)

A Multimodal Data Integration

- Pan-cancer, fusing histology and genomics (Cancer Cell, 2022)
- Pathomic Fusion (IEEE Transactions on Medical Imaging, 2022)
- MMP (ICML, 2024)SurvPath(CVPR, 2024); MCAT (ICCV, 2022)

A Foundation Models R 0

-HIPT (CVPR, 2022)

- Vision centric foundation model (Nature Medicine, 2024)

- Vision-language foundation model (Nature Medicine, 2024)
- PANTHER (CVPR, 2023) ; TANGLE (CVPR, 2023)

A Generative Al for Pathology s e
- PathChat (Nature, 2024) 0 B v o |

A Transitioning from 2D to 3D Pathology |
- TriPath(Cell, 2024) & ColPross

A Bias and Fairness

2 \ /
Nompar X * o ~—
Mo 2022 2 ¢

- Do foundation models reduce model bias? (Nature Medicine, 2024)

&5 HARVARD

3’? MEDICAL SCHOOL



Key Messages
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Data driven Foundation Models + autonomous Al Agents will address
many open questions in biomedicine.

Foundation models are the backbone for modern Al in biomedicine,
encoding data into meaningful representations.

Diversity of data > quantality of data in learning meaningful
representations.

Multimodal foundation models improve representation for ALL modalities.
FMs = diverse + multimodal data builds strong models.
Autonomous Al agents discover from data, make use of FMs, test

Qy othesis and are the engine for future discovery from biomedical
ata.



ML-driven Computational Pathology

Clinical applications:
A Diagnosis
A Prognosis, Survival outcome _
A Predicting molecular alterations Genomics
A Responseto-treatment
[/ Integrative )
Clinical
Outcomes Radiology
Early

Diagnosis

Prognosis

I
=

Response to

Treatment
Prediction Lab results

Survival
Prediction

Patient
Stratification

‘

89,000 x 79,000 px
ey
Integrative . .
Biomarker Diagnostic

Discovery reports
—/

Vital signs
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THE ANALYSIS OF CELL IMAGES*

Judith M. S. Prewitt and Mortimer L.. Mendelsohn

Department of Radiology, University of Pennsylvania,
Philadelphia, Pennsylvania

Introduction

Automation of the acquisition and interpretation of data in microscoy
been a focus of biomedical research for almost a decade. In spite of
serious atternpts,l_5 mechanical perception of microscopic fields with
ability that would inspire routine application still eludes us.

Many facets of the problem appear to be well within the grasp of present-
day technology. Thus, available histochemical techniques make it possible to
prepare biological materials so that morphological integrity is preserved, key
constituents are stained stoichiometrically, and the specimens are favorably
dispersed for effective imaging one by one. Scanning microscopes now have
the requisite sensitivity, resolution, and stability to sample such objects and
make photometric measurements over a wide range of magnifications and

wavelengths within the visible and near-visible spectrum. Furthermore,
modern large capacity, high speed data facilities at last provide the ability to

manipulate the hitherto unmanageable quantities of optical information con-
tained W1th1n all but the mmplest images.
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1965

MORTIMER L. MENDELSOHN, M.D., WILFRED A. KOLMAN, PH.D.,
BENSON PERRY, BA. AND JUDITH M. S. PREWITT, M.A.*

University of Pennsylvania School of Medicine, Philadelphia

Computer Analysis of
Cell Images

The state of automation in microscopic morphology is
discussed, and a new approach based on computer
analysis of cell images is presented. Examples are given
of the application of the CYDAC system to blood cell

and chromosome discrimination.

MHE history of technology can be viewed as
man’s progressive development of machines
to supplement or greatly extend his capacity
for manual work. In recent years this sphere
of activity has come to include mental work
as well. Automation has had an increasing
impact on areas hitherto thought of as being
peculiarly human. In an era when machines
sort bank checks, read and translate printed

PGB PRI Sl s, ISFEUIORE SRR e PSSR FR ORI i o

overwhelming numbers by present-day medi-
cal practice.

Several attempts have produced machines
which measure particular optical properties,
apply elementary decision logic, and thereby
size and sort cells and other biologic objects
to a limited extent."* Operating without
human intervention, one of the most sophis-

ticated of these devices examines slide after
P 50 R DRO. ) | o R AP e S L R S g L. . —-11_



CYDAC @ Digital Computer
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Computer Analysis

;

Extraction,
classification,
recognition

Microscopic Image Pictorial Print

The CYDAC System T

FIGURE 1. Schematic presentation of operation of CYDAC system. Upper row of panels
represents the sequence by which microscopic images are converted into digital form, trans-
mitted to the computer, and converted back into image form. Some indication of the quality
of the data is given by the comparison of the conventional photomicrograph of a human
metaphase (left) and a computer printout of a CYDAC scan of the same material (right).



Supervised Metho@Need Manual Labeling or ROI Extractic

SUPERVISED

( 4 = 111
= (~ Y APPLICATION
a FEATURES EXTRACTION LEARNING CATIONS
E : () : O\ OUTPUT [Classification )
< . wilen 0 O 70~ ( Detection )
2 : e a W o7 S>> O | Cancer
o : = —> '5 w _— g O O 20 A [Segmentation )
QI 3 - =2 E 0 QRO <=~27 @) Benign T :
e 5 j ﬁ u>.| O N O 7/ [Quantlflcatlon/Countlng)
:‘E Feature - labels - * k ' * High interpretability
) ¢ Needs domain knowledge
= (usually manual) 9 (shallow network or ML model) J |+ Less data-hungry than DL )
\ &
r Va =
PATCHES LEARNING APPLICATIONS
CANCER|| BENIGN L —@.  OUTPUT ||( classification )
s T O | Cancer (Detection )
3] > 2 CF5 % NN -t [ gn Segmentation
: | ) ( Quantification/Counting)
; Convolution Poolin Fully Connected * Interpretability (6.9. GradCAM)
""" Pixel - labels .. e it a5 1 ¢ Automated features extraction
L — L FEATURE EXTRACTION PREDICTION ) * Needs domain knowledge (RO) |
. JJ

=23 HARVARD [F&J BRIGHAM AND #'A Dana-Farber
MEDICAL SCHOOL "~.\ ) WOMEN’'S HOSPITAL. @ Cancer Institute



Weakly Supervised Methd8lide Level Labels are enough!

WEAKLY-SUPERVISED

GRAPH CNN

CANCER
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4 g
3 e
= S o X

Slide - labels

Nuclei
Segmentation

Graph
Construction

N

LEARNING

GCNN {

OUTPUT

Cancer

( )

APPLICATIONS

( Classification ]
( Detection j
)

( Biomarker discovery

Benign

¢ |nterpretability (e.g. Graph-CAM)
¢ Accounts for tissue architecture
¢ Relays on graph construction
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"~ Slide - labels

FEATURE
EXTRACTION

AGGREGATION

LEARNING
Ba

featusr"es

OUTPUT

Cancer

Benign

PREDICTION

[ APPLICATIONS

( Classification ]

( Detection J

( Localization J
)

[ Biomarker discovery

¢ |nterpretability (Attention maps)
e Spatially invariant
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NATURE MEDICINE ARTICLES

a 0.5 |
Dataset Years Slides Patients Positive
Prostate in house 2016 12,132 836 % 04 1
Prostate external 2015-2017 12,727 6,323 1 2
Skin 2016-2017 9,962 5,325 5 03
Axillary lymph nodes 2013-2018 9,894 2,703 g
Total 44,732 15,187 5 021

£
£ 01
=
(Campanellaet al., 2019)
0

10? 10° 10°*
Number of training WSls

>= 10,000 labeled slides for best performance.

Is there a dataefficient way to do this?

Rare Conditions, Clinical Trials, Patient Stratification

5 HARVARD [P BRIGHAM AND # A Dana-Farber
&9 MrepicaLschool  \¥Y WOMEN'S HOSPITAL @ Cancer Institute



CLAM Workflow

AWeakly supervised learning from o ARTICLES
. . . iomedical engimeering https://doi.org/10.1038/s41551-020-00682-w
histology whole slide images.

AAdapts Attention Based Multiple Data-efficient and weakly supervised

computational pathology on whole-slide images

I nStan C e L e arn i n g fo r C O m p Utati O n al Ming Y. Lu®'?3 Drew F. K. Williamson ©'*, Tiffany Y. Chen©'5, Richard J. Chen ©'#, Matteo Barbieri'?

and Faisal Mahmood ©"23%2

I at h O I O g y- Deep-learning methods for computational pathology require either manual annotation of gigapixel whole-slide images (WSls)

or large datasets of WSIs with slide-level labels and typically suffer from poor domain adaptation and interpretability. Here
we repurt an interpretable weakly supervised deerrlearnlng method for data-efﬁ:ient wsi prooessing and Iearnlng that

/ \U ed I e | I Ied I “ “ l " ) d r CCLAMD, uses attention-based learmin o dentfy subregions ofhigh diagnosti vaue o accurately lacaiy whole sides ang
t uses ng to egions o iagnostic value to accurately c wi
S p al ea e e O e S tult: c’t’.lgltyr.v“:lg :re s| oellr‘amdo::f clre':a :.rn:ailt Ilrlesng ca::'.;o stwera“I‘I |:Itll clelectt on :fIT:m';h no:: metI:r tg ; , We

show that it can be used to localize well-known rnorph Iogl:alfeai ures on IWSI witho utlh need for spatial labe I lha'l it

iInstead of end-to-end training. e e Lt e e e s
AEaSy to use Codebase. Ad ances in dgltlpthlgy nd artificial intelligence have  diagnoses where only a handful of examples may exist or for clinical

presented the potential to analyse gigapixel who 1 Id trials where it may be useful to predict the outcome from a small
images (WS] ) f bj u d g 1s, p gn d cohort of patients. Moreover, to produce a slide-level prediction

(] CLAM [ Public

Open source tools for computational pathology - Nature BME
(Nature Biomedical Engil

& \0) Mahmood Lab O Python ﬁ 1.3k ?39 402
-.-Z?

Al for Pathology



MIL Frameworks

For patient j,input: WSIQ target: clinical endpoint @
- Lung cancer subtypew = {Lung squamous cell carcinoma, Lung adenocarcinoma}
- Gene mutation® = {wildtype, mutated}

Problem formulation
Classification 0 (&

o)

& -

Glass slide

WSI patches
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Feature
extractor

Input patching
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Slide scanner

100,000 x 120,000 px

Patch embeddings

WSI

Feature extraction

Qe sl YO pfB h
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"Qneural network
(for ViT)
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aggregation

‘ (Multinomial) Logistic regression!
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Segmentation & patching

WSI embedding
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Tumor Origin Prediction Primary vs. Metastatic Prediction

Cancers of Unknown Pri = — =«

oo
o
«

0.89
0.92|
C h " A b 206 086 206 083
ancers where a primary origin can not b z
. ® 0.80 ®

$0.4 $0.4 7]

determl nEd . & 0-74'0.02 008 074 020 072 2 0?10,08 0.15 0.21 0.28 0.34
A _ 0 f ” 0.2 ( Test AUC: 0.990 0.2 Teos:: o.:g4? .

1-2% of all cancers. B sttt
95% Cl: 0.978-0.987 0.0 95% Cl: 0.896-0.943

o
=)

A30,27Ccases expected to be diagnosed i 0 0z g 06 08 1o 00 oz ed oe o o
AMedian survivd. 716 months

A2-year survival rat20-25% Tumor Origin Prediction Primary vs. Metastatic Prediction
ACUP patients undergo a complete workt I

clinical, radiological, endoscopy, molecu
Can we use H&E whole slides to dete .. _ 2 o= 22‘2‘;5“%

o = -
@ o o
o o =
@ @© o

©
~
o
~

Top-k Accuracy

an attempt to determine origin.

origins for cancers of unknown primar ..

Exlernal Test

&85 HARVARD [ BRIGHAM AND " Dana-Farber
€&J MEDICAL SCHOOL \\ ) WOMEN’'S HOSPITAL. @@ Cancer Institute

CE)"\ Mahmood Lab
?AI for Pathology (Natu re, 2021)



Nature BME, 2024in pres

Integrating histology + genomics for origin predlctlon



